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Abstract— This paper presents an implementation of the Queens 

puzzle using the A* search algorithm. The puzzle is a variation of the 

classic n-queens problem with additional constraints: queens must 

not be placed within one cell of each other, no two queens can share 

the same row or column, and each irregularly shaped area on the 

board must contain exactly one queen. The board is represented 

using a 2D array for placements and an area map. A* is used to 

explore possible queen placements by expanding valid 

configurations, helped by a heuristic function based on placement 

progress. Although the A algorithm successfully finds a solution, 

this paper concludes that it may not be the most suitable method 

due to the puzzle’s nature as a constraint satisfaction problem 

rather than a pathfinding one. A backtracking approach may be 

more efficient and better aligned with the problem structure. This 

project serves as an exercise in applying algorithmic techniques 

and problem modeling to non-traditional search problems. 
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I.  INTRODUCTION  

The Queens puzzle is a modern logic game featured on 
LinkedIn, inspired by the classic 8 Queens puzzle but with a 
unique twist. While the traditional puzzle requires players to 
place eight queens on a chessboard such that no two attack each 
other, including diagonally the Queens puzzle removes the 
diagonal restriction and introduces additional constraints like 
jigsaw sudoku. Players must fill the board entirely with queens, 
ensuring that no two queens are in the same row or column, that 
no queen is placed within one-block radius of another, and that 
each irregularly shaped area on the board contains only one 
queen.  

 

 

Image 1. Example of Queens Puzzle, taken from [1] 

 

The purpose of this paper is to explore the logic and 
constraints of the Queens puzzle and to apply algorithmic 
knowledge to implement one or more possible solutions. By 
approaching the puzzle from a computational perspective, this 
study aims to deepen understanding of constraint-based 
problem-solving and demonstrate how algorithm design can be 
used to efficiently solve complex board-based logic challenges. 

II. THEORETICAL FOUNDATION 

A. A* Algorithm 

The A* algorithm is a widely used pathfinding and graph 
traversal technique that finds the shortest path between two 
nodes in a weighted graph. It combines the strengths of UCS 
algorithm and greedy best-first search by considering both the 
actual cost to reach a node and the estimated cost to reach the 
goal from that node. This is achieved using a heuristic function, 
making A* both complete and optimally efficient under certain 
conditions. 

Formally, A* uses the following evaluation function for each 
node n: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

Where: 

𝑔(𝑛) = is the actual cost from the starting node to the current 
node n, 

ℎ(𝑛) = is the heuristic estimate of the cost from n to the goal 
node, 

𝑓(𝑛) = is the total estimated cost of the cheapest solution 
through n. 

In the context of this implementation, each board state is 
treated as a node. The cost g(n) is represented by the variable 
step, which indicates how many queen placements have been 
made so far. The heuristic h(n) is represented by filled_count, 
which tracks how many cells have been marked) to estimate 
progress toward completing the board. 

The custom priority logic is implemented in the __lt__() 
method of the Board_state class as follows: 
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Image 2. Heuristic for Prioqueue Function, taken from [2] 

 

This function defines the comparison rule used by Python’s 
heapq module, which manages the open set as a priority queue. 
Since heapq is a min-heap, the comparison is inverted using > to 
simulate a maximizing function giving higher priority to states 
with a higher combined score of progress and path cost. This 
inversion ensures that board states that are closer to a complete 
and valid configuration are expanded earlier. 

By defining f(n) in this way, the algorithm effectively 
prioritizes board states that are not only closer to the goal but 
also progressing steadily through legal placements. While the 
heuristic is simple, it is admissible and consistent, which 
maintains the correctness of the A* algorithm in this context. 

 

III. RELATED WORK 

 

 
 

Image 3. N-Queens Problem , taken from [3] 

 

 

The Queens puzzle presented in this paper is inspired by the 

classical N-Queens problem, a well-known combinatorial 

challenge in computer science and artificial intelligence. The 

original N-Queens problem requires placing 𝑛 queens on an  

𝑛 × 𝑛 chessboard such that no two queens threaten each other. 

This includes avoiding conflicts in rows, columns, and both 

diagonals. Numerous solutions have been proposed for the N-

Queens problem, most notably backtracking algorithms, which 

systematically explore the solution space and prune invalid 

configurations early. 

Beyond backtracking, several studies have applied constraint 

satisfaction problem frameworks to the N-Queens problem. 

These approaches use constraint propagation techniques such as 

forward checking and arc consistency to reduce the number of 

viable assignments at each step. Such techniques are particularly 

effective for problems where domain reduction plays a 

significant role in pruning the search tree. 

The Queens puzzle implemented in this work introduces an 

added layer of complexity by incorporating irregular jigsaw-like 

regions, each of which must contain exactly one queen, as well 

as a proximity restriction that forbids any queen from being 

placed within a one-cell radius of another. These modifications 

transform the problem into a hybrid between the N-Queens 

puzzle and jigsaw Sudoku, where positional constraints are 

different by area. 

 

IV. METHOD 

To solve the Queens puzzle, this study utilizes the A* 
algorithm as a method for finding a valid and complete queen 
placement configuration under a set of constraints. A* is chosen 
due to its ability to efficiently explore the state space using a 
combination of actual cost and heuristic estimates to guide the 
search toward optimal or feasible solutions. 

Each state in the search space represents a partially filled 
board, where some queens have already been placed. The goal 
is to reach a final state where the board is fully filled with 
queens, while satisfying all three of the puzzle’s constraints: no 
two queens share the same row or column, no queen is within a 
one-block radius of another, and each irregular area contains 
exactly one queen. 

A. State Representation 

Queens puzzle board is represented using a two-dimensional 
array of characters, where each cell corresponds to a square on 
the puzzle grid. The array structure allows for efficient access, 
modification, and checking of queen placements during the 
search process. 

To represent the irregular area grouping required by the 
puzzle, a separate two-dimensional integer array is used. Each 
cell in this array contains a number indicating the area to which 
that cell belongs. For example, the area configuration: 

 

 

Image 4. Example of Board Representation , taken from [2] 
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Image 5. Original Board , taken from [1] 

 

The main board used during A* execution is a character-
based 2D array with the following symbol conventions: 

 

• 'Q' denotes a cell currently occupied by a queen, 

• 'X' represents a forbidden cell (due to proximity or 
conflict), 

• '.' or ' ' (space) denotes an empty, available cell. 

 

By combining these two data structures, one for the queen 
placements and one for the area labeling the algorithm can 
efficiently check constraint violations, calculate heuristic values, 
and generate successor states. 

B. Constraints Handling 

 In the implementation of the Queens puzzle solver using the 
A* algorithm, constraints are enforced through a combination of 
board updates and validation checks defined within the 
Board_state class. Each candidate queen placement undergoes 
multiple checks to ensure it complies with the puzzle's rules 
before the resulting state is expanded and added to the priority 
queue. The main constraints are as follows: 

 The three core constraints are handled as follows: 

1) Row and Column Exclusivity 

 

 

Image 6. is_valid_placement function , taken from [2] 

 

 To ensure that no two queens occupy the same 
row or column, the is_valid_placement() method 
checks the entire row and column of the candidate cell 
for any existing queens. If a queen is found, the method 
returns False, disallowing the move. 

2) One-Block Radius Rule 

 

 

Image 7. place_queen function, taken from [2] 

 

 After placing a queen using the place_queen() 
method, the surrounding 8 adjacent cells (both 
diagonally and orthogonally) are marked as "X" to 
indicate that they are no longer valid for future queen 
placement. This prevents violations of the one-cell-
radius rule. 
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3) One Queen per Area 

 

 

Image 8. is_valid_area function , taken from  [2] 

 

 Each cell belongs to a specific irregularly shaped area, 
represented by the Area class. The get_area_id() function 
maps a coordinate to its area. After a queen is placed, all 
other cells in the same area are marked "X" to ensure that 
only one queen is ever placed in that area. The 
is_valid_area() method checks that an area has not been fully 
blocked before attempting to place a queen in it, thus 
enforcing this constraint during search expansion. 

4) Validity Checks for State Expansion 

Before a state is accepted into the A* queue: 

a) is_valid_placement() ensures the move 
doesn’t violate any rules at the point of 
placement. 

b) is_valid_area() ensures that placing a queen in 
the target area won’t make it impossible to 
solve (i.e., fully block the area). 

c) is_valid_board() can be used as an extra check 
to ensure global consistency when needed. 

 Additionally, the number of queens placed is tracked 
with get_queen_count(), and filled_count is used as part of 
the priority queue comparison logic via the __lt__() method 
to guide the A* search. 

 Together, these constraint mechanisms ensure that only 
legal and promising states are expanded, significantly 
reducing the search space and allowing A* to converge more 
efficiently toward a valid solution. 

C. Heuristic Function 

In the A* search algorithm, the heuristic function ℎ(𝑛) plays 
a crucial role in guiding the search toward promising board 
configurations. It provides an estimate of the cost from the 
current state n to a goal state, allowing the algorithm to prioritize 
more favourable paths. 

For the Queens puzzle, the goal is to place a queen in every 
area while satisfying all placement constraints. To reflect this, 
the heuristic function is designed to estimate the number of 
placements remaining and potential constraint violations that 
may occur as the board fills. 

In this implementation, the heuristic is implicitly encoded 
using the filled_count and step variables in the Board_state 
class. The filled_count represents the number of valid 
placements on the current board, while step represents the 
number of moves made so far. 

The priority queue (min-heap) used by the A* algorithm 
orders board states based on the following evaluation function: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

Where: 

𝑔(𝑛) = step is the actual cost from the start state to the 
current state, 

ℎ(𝑛) = filled_count is used as a heuristic estimate of how 
close the board is to being complete. 

This means that the algorithm prioritizes states that have 
more queens successfully placed, while also considering how 
many moves have been made to reach that state. 

D. Successor State Generation 

 In the A* search algorithm, generating successor states is a 
key step in exploring the search space. For the Queens puzzle, 
each successor state represents a new board configuration that 
results from placing an additional queen in a valid position. The 
quality and efficiency of this process directly influence the 
overall performance of the algorithm.  

 In this implementation, successor states are generated by 
iterating through all available cells on the board and attempting 
to place a queen in each one. The place_queen() method is 
responsible for updating the board when a valid placement is 
found, while preserving the problem's constraints. 

 

 

Image 9. Main  Algorithm , taken from [2] 

 

Steps to Generate Successors: 
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1) Iterate Through the Board 
The algorithm examines each cell in the 2D array to 
determine whether it is empty (i.e., not marked with 'X' 
or 'Q'). 

2) Constraint Checking 
For each candidate cell, the is_valid_placement() 
function is called to verify that placing a queen would 
not violate the following rules: 

a) No other queen exists in the same row or 
column. 

b) The cell is not already marked as 'X’. 

3) Area Validation 
If the basic constraints pass, the get_area_id() function 
retrieves the area ID of the candidate cell. The 
is_valid_area() function is then used to check whether 
a queen has already been placed in that area. If the area 
already contains a queen, the cell is skipped. 

4) State Creation 
If all checks pass, a deep copy of the current 
Board_state object is made. The queen is placed on the 
copied board using place_queen(), which also marks 
forbidden cells. The new state is then added to the A* 
open set for further evaluation. 

5) Priority Evaluation 
The new board state's priority is calculated based on the 
combined value of filled_count and step. The priority 
queue automatically orders these states using the 
custom __lt__() method. 

 

E. End State 

 The end state in the Queens puzzle represents a fully 
completed board configuration where all constraints are satisfied 
and no further queen placements are required. Determining 
whether a board has reached a valid end state is a critical step in 
the A* algorithm, as it serves as the stopping condition for the 
search process. 

 A board is in an end state if the following conditions 
are met: 

1) All areas contain exactly one queen 
The total number of queens placed on the board must 
equal the number of unique area regions. Each area is 
checked to ensure that it contains exactly one queen 
and that no conflicting placements exist within that 
region. 

2) No two queens threaten each other 
This includes validation that: 

a) No queens share the same row or column, 

b) No queen is placed within a one-cell radius of 
another queen, 

3) No empty or unprocessed spaces remain 
All non-queen cells on the board must either be marked 
as forbidden ('X') or belong to a region that already 

contains a queen. If any empty cell (' ') remains in a 
region without a queen, the state is considered 
incomplete. 

 

 

Image 10. is_finish function, taken from [2] 

 

 This validation is handled programmatically by the 
is_finish() method in the Board_state class, which performs 
a final consistency check over rows, columns, regions, and 
cell contents. Only when all these checks pass is the current 
board configuration accepted as a valid solution 

 

V. CONCLUSION 

This paper presented an approach to solving the Queens 
puzzle using the A* search algorithm, adapted to accommodate 
unique constraints such as one-queen-per-area, no queens in the 
same row or column, and a one-cell radius restriction. By 
modelling the puzzle as a state-space search problem, A* was 
used to efficiently explore valid configurations through a 
combination of actual cost (number of moves made) and 
heuristic estimation (progress toward completion). 

The algorithm successfully finds valid queen placements by 
expanding only those states that satisfy all given constraints. 
Object-oriented design, such as the use of Area and Board_state 
classes, ensured modular, readable, and extensible code that can 
easily support further enhancements. 

However, although the implementation using A* works as 
intended, it is not necessarily the most optimal algorithm for this 
specific problem. Unlike traditional pathfinding tasks where the 
sequence of steps matters, the Queens puzzle is fundamentally a 
placement and constraint satisfaction problem. Since the path 
taken is irrelevant as long as the final configuration is valid a 
backtracking approach may be more natural, efficient, and easier 
to reason about. Backtracking directly explores valid 
configurations recursively, pruning invalid paths early without 
the need for heuristic estimation or priority queues. 

In conclusion, while this implementation demonstrates how 
classical search algorithms like A* can be applied to constraint-
heavy logic puzzles, future work could explore and compare 
other strategies such as backtracking or constraint propagation 
to improve performance and simplicity. 

VIDEO LINK AT YOUTUBE  

https://youtu.be/15a62zyToXQ 

https://youtu.be/15a62zyToXQ
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